國立臺北大學電機工程學系專題報告

模擬車聯網適地姓服務之視覺化系統

組員:李函光

指導:林嘉淦 吳柏翰

執行期間:104年7月至105年6月

1. 摘要

本系統的誕生旨在「引用物聯網的概 念創造一個以位置為基礎的雲端服務」

使用者能在應用程式上瀏覽行駛中車輛的詳細資料,並透過應用程式在地圖上佈署服務範圍,一旦有裝置進或是出範圍邊界,就會觸發推播事件。

相關應用:

施工區域警示、大樓/校園維安管制、計程 車車隊管控、大賣場促銷推播、政府公共 管理。

關鍵字: Location-based System、Internet Of
Things、Graphical User Interface、
Geographical Information System、
Intelligence Decision Support
System

2. 簡介

本系統的誕生旨在「引用物聯網的概念 創造一個以位置為基礎的雲端服務」。選 擇了行駛中的車輛作為數據來源,服務對 象遍及車上乘客、駕駛、車廠、保險業者 及商家、其中以車上的駕駛為主要對象。

物聯網

不需要人為的操作,它就知道你要什麼, 給你什麼;預測你的需求,給你即時的幫 助。

適地性服務

即 Location-based system,結合定位功 能提供定位、資訊、社群相關的服務。簡 稱 L. B. S。

車聯網

簡單來說,就是把車子拉入物聯網的生態 系。每台車子都是一個訊息的載體,有很 多非常有用的訊息。只要訊息有價值,就 能被蒐集、整理,做進一步的應用。

智慧決策支援系統

一個作品的靈感往往來自現存的理論 基礎,這些都是前人智慧的結晶,最後決 定引用了 Intelligence Decision Support System,簡稱 I.D.S.S,做為開發系統的核 心思維。

決策支援系統(Decision Support System,DSS),是一種藉由數據(Data)、模型(Model)、知識(Knowledge),透過使用者介面(User Interface,UI)以人機互動(Human-Computer Interaction,HCI)的方式協助決策者進行結構化(Structed)、半結構化(Semi-Structed)、非結構化(Non-Structed)決策的輔助系統。

DSS 的概念在 70 年代正是出現,然

而各界對 DSS 的定義仍有諸多分岐,直到 Sprague 與 Carison 提出

Dialog-Data-Modeling,正式奠定 DSS 的三 庫子架構。

3. 專題進行方式

IBM Bluemix

本系統是在IBM Bluemix 上運行的。 IBM Bluemix 是一個 P.a.a.S (Platform as a Service)的雲端服務平台,顧名思義就是"平台即服務",提供了一系列的服務套件供應用程式開發人員使用。

以下是系統中使用的服務:

A. Waston IOT Platform

用來接收、管理裝置的資料,是整個應用程式的核心。透過 MQTT(Message Queuing Telemetry Transport) 作為機器間(M2M)的通訊協定,特色是高度輕量級、小規模、低功耗,是移動應用程式的理想選擇。資料的交換方式主要有三種方式:Connect/Subscribe/Publish。

不論是真實或是模擬的裝置,再使用服務前需要由應用程式管理人員在平台上申請一組 API KEY (Application Programming Interface)與密碼,作為認證與辨識裝置的依據。

B. Geospatial Analytics

用於定義服務範圍的功能。Geospatial Analytics 對 IOT 平台訂閱裝置的所

在位置,也就是經緯度。再判斷該目標 裝置使否穿越的使用者在地圖上定義 的範圍,依情況對應用程式發佈相對應 的指令。

使用者介面

透過 IBM Bluemix 的幫助,得以讓應 用程式從雲端上獲取裝置的相關資訊。下 一步便是想辦法讓這些純粹文字形式的資 料,有意義的呈現在使用者面前。 以下是使用到的開發工具:

A. Node.js

應用程式從雲端上獲得車輛資料,而雲端上的資料又是哪裏來的呢?這系統的車子是用在 Node.js 上撰寫的程式模擬的, Node.js 每一秒為每台車創造 2 筆新的數據,這也就是介面上車輛能隨機移動的原因。

雲端上架設了 4 個模擬器(Red、Black、Blue、Green),分別用顏色區分。一個模擬器模擬 7 台車子,一共有 4 個車隊;共 28 台車子。

B. HTML Web(Javascript)

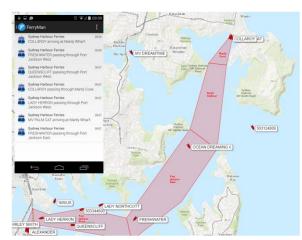
眾所皆知的 Html 網頁,詳細的就不再 追述了,HTML 的後台是 Javascript,掌 握了應用程式背後的運作方式,待系統 發展成熟,可以移植到 Android App/IOS 上,供行動用戶使用。

C. OpenStreetMap

照理說,有了經緯度就能知道裝置的實際位置,但對使用者來說,兩個浮點數形式的經緯度不足以讓人判斷精確位置,勢必需要地圖的輔助,透過程式讓車子ICON出現在地圖上的特定位置,讓使用者能透過介面對目標的位置一

目了然。

這系統是使用了 OpenStreetMap,有著 Open Data 的核心精神:開放與自由,由全球群眾共同協作繪製,供使用者依自己的需要作修改。像是殘障廁所地圖,或是飲水機地圖。

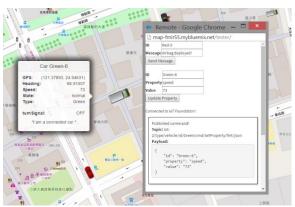

D. BootStrap

是一個用於快速開發 web 應用程式的 前端框架,本系統使用 Bootstrap 對車 速進行分析,以折線圖方式呈現於介 面。

E. Twitter

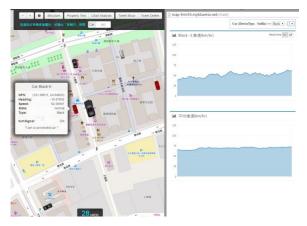
由特定事件所觸發的推播對象,可以是 特定對象的私訊,也可以是公開群組的 散播。本系統使用 Twitter 的推文作為 發佈車輛進出區域的動態平台。

4. 主要成果與評估



系統使用 OpenStreetMap 作為底圖,如實動態呈現 裝置位置,簡潔、明瞭又不失流暢性。

點選特定車輛 ICON,即可檢視該車輛詳細資料。 部分屬性是以時間為序列做動態變化。


使用者得以透過系統介面更新雲端上的資料。車子 會依使用者給予的車速實際在地圖上行駛。

使用者得以任意佈署範圍。一旦有車輛的進或是出 範圍邊界,將會觸發提醒事件,並顯示在範圍中的 停留時間。

在車輛進出事件被觸發的同時,系統會在 Twitter 上發佈貼文。記錄了某台車在特定時間點進或是出 了哪個範圍。

系統留存了過去 60 秒的車速紀錄。若有充分的車輛數目作為樣本,將能實現塞車路段的預測。

5. 結語與展望

個人對自己的成果還算滿意,車聯網說 是趨勢,全世界趨之若鶩的嘗試,相信還 有許多同樣是 IOT 開發領域的同仁,有著 更創新的點子,更精湛的技術教學相長讓 我們觀摩與學習。

待系統發展成熟,會接著用 Android Studio 開發行動用戶端的應用程式,讓出 門在外的使用者也能受惠於系統服務的便 利性。

此外,系統未來的應用也許能聚焦在" 停車媒合"這方面作發展。相對於之前提到 的相關應用,這會是目前行車駕駛最迫切 的需求,而非只是純粹存在的價值,尤其 是在車潮壅塞的大型都會區,相信能透過 系統解決駕駛對於"找不到停車位"這個 心頭之患。

6. 銘謝

莫忘初衷,反求諸己。天將降大任於斯 人也,必先苦其心志,勞其筋骨,餓其體 膚,空乏其身,行拂亂其所為,所以動心 忍性,增益其所不能。

士生於世,使其中不自得,將何往而非 病?使其中坦然,不以物傷性,將何往而飛 快?

回顧到一年前的今天說起,還在灌虛擬機上的 Open Source OS,建立 Cassandra、KairosDB 等關聯式資料庫,再來是手機程式 Android Studio 的撰寫,APP 使用者登入/註冊系統,以及行動裝置與資料庫的繫節應用,接著是 GUI 資料視覺化的練習,交通部的 API 競賽,IBM Bluemix 物聯網GIS 應用程式實作,還有最近的以 Postgre SQL 應用於手機程式的美食導航 APP,一

年下來的經驗雖然輕鬆卻也是充實,善哉 妙哉,共勉之。

也很榮幸自己是電機領域的一份子,雖 然在硬體的設計與開發頻頻踢到鐵板,但 也就意味著,在這大學生涯中,尤其是過 去的這一年,能逐漸確立自己的定位。雖 然說路是人走出來的,但不意味著死路也 要走到盡頭。

相信各位都很清楚,台灣靠著半導體/積體電路相關產業造就經濟起飛,從事該領域的研究會有不錯的起薪的出路。然而,大眾所公認的大餅對一些人來說卻是不歸路;如果能放下身段,認知到自己並不是這領域的料,而非一味的欺騙自己,盲目的追隨每個人掛在嘴上的"趨勢",若另尋出路何嘗不是個理想選擇呢?免得飛蛾撲火,一去不回。

再者,工程師最大的敵人就是"自負",一說是學業有成後自認為已經是所向披靡,便鬆懈後停止自己的成長,殊不知這念學的是接著被淘汰掉的導火線,事實是學物遊水行舟,在進則退。二來是說,在少數大行舟,不進則退。二來是說最高,便開始了一世,不認同別人的世界。然而要有一個團隊的支持,沒了團隊的動力。

一年下來,在得知其他實驗室的狀況後, 實在是很慶幸當初選擇了正確的指導教授, 自己有了點年紀,遇過的事情,認識過的 人有也不算少了,感觸良多。指導教授的 定位應該用"領路人"來形容較為貼切,各 自有著屬於自己的指導方式,也許是希臘 式自主學習的或是斯巴達的鐵血教育,都 是為了學生的成長全心全意在付出。

最後還是得說,謝謝當初林老師收我作這一年實驗室的專題生,時間過得很快, 希望能透過我的成果發表告訴老師:當初 收我是對的選擇。

也謝謝華創創意中心部門上下的同仁, 在過去這一年每周的會議中,受到很多照 顧,會議的流程,技術的交流,實在是增 廣見聞。

當然還有吳柏翰學長,從談吐和作為中 不時散發著領導人的特質,表於言,溢於 行,在他的指導下不只是技術上學習,還 有有說服力推銷技巧、新穎的邏輯思維及 看待事物的格局,簡單來說,在學長的教 誨下,處事能力是以指數在成長的。

7. 参考文獻

- [1] Turban, E., & Aronson, J. (1997). Decision support systems and intelligent systems: Prentice Hall PTR Upper Saddle River, NJ, USA.
- [2] Sprague, R.H., Jr and Carlson, E.D. (1982) Building Effective Decision Support Systems,

Englewood Cliffs, NJ: Prentice Hall.